
Containment and Inheritance

Contents

• Define a containment and state its rules.

• Implement containment

• Need of member initializer list.

• Define inheritance.

• Implement inheritance.

• Define function overriding.

Containment

• Containment represents ‘ has ’ or ‘ is a part of ’
relationship.

• One object added as part of another object.

• It is not compulsory in containment that object
should be of same type.

• For e.g.

car has engine.

or

engine is a part of car.

Implement containment
class cEmployee

{

protected:

int eid;

float esalary;

cString name; //object of class cString

cDate dob; //object of class cDate

public:

cEmployee()

{

id=1;

salary=10000;

}

};

Implement parameterized constructor

cEmployee :: cEmployee(int id , int sal , char* nm , int d ,
int m , int y)

{
eid=id;
esalary=sal;
name=cString(nm);
date=cDate(d,m,y);

}
int main()
{

cEmployee e1(1 , 40000 , “Ajit” , 14 , 09 , 1994);
}

Constructor calling for cEmployee

• cEmployee is invoked first.

• cString default constructor.

• cDate default constructor.

• cString parameterized constructor.

• cDate parameterized constructor.

• Finally cEmployee is executed.

• So here total constructors are called.

Need of member initializer list

• Here unnecessary default contractors are
called.

• To reduce calling of default constructors we
need to use member initializer list.

• By using this only parameterized constructors
are called.

Need of member initializer list:
example

cEmployee :: cEmployee(int id , float sal , char *nm , int d , int m ,
int y) : name(nm) , dob(d , m , y)

{

eid=id;

esalary=sal;

}

Constructors calling Sequence:

cString() -> cDate() -> cEmplyee()

cEmployee accept()

void cEmployee :: accept()
{

cout<<“Enter the id\n”;
cin>>eid;
cout<<“Enter the salary\n”;
cin>>esalary;

name.accept();
dob.accept();

}

Inheritance

• One object can extends or acquires properties
form another object.

• Represents ‘ is a ’ relationship.

• Provides reusability and extensibility.

• For e.g.
Person

Employee

Sales Person Manager

Inheritance Syntax

class base-class-name

{

//body of base class

};

class derivedClass : accessSpecifier baseClassName

{

//body of derived class

};

Implementing cSalesPerson class

class cSalesPerson : public cEmployee

{

float sales;

float comm;

public:

cSalesPerson();

cSalesPerson(int ,float , char* , int , int , int , float , float);

void accept();

void display();

};

Constructors for cSalesPerson class
cSalesPerson :: cSalesPerson() //default

{

sales=0;

comm=0;

}

cSalesPerson :: cSalesPerson(int id , float sal , int d , int m , int y
,float s , float c) : cEmployee(id , sal , d , m , y)

{

sales=2000;

comm=1000;

}

Accept function for cSalesPerson class

void cSalesPerson :: accept()

{

cEmployee::accept(); //called base class fun

cout<<“Enter the sales and comm\n”;

cin>>sales>>comm;

}

Lab Assignments

• We have already implemented cEmployee class. Now we
have to implement derived classes for this class

1. cSalesPerson class

a. data members: sales and comm.

b. Constructors.

c. accept() and display() functions.

2. cManager class

a. data members: petrol and food allowance.

b. Constructors.

c. accept() and display() functions.

