Containment and Inheritance

Contents

* Define a containment and state its rules.
* Implement containment

* Need of member initializer list.

* Define inheritance.

 Implement inheritance.

e Define function overriding.

Containment

Containment represents “ has’ or “is a part of ’
relationship.

One object added as part of another object.

It is not compulsory in containment that object
should be of same type.

For e.g.
car has engine.
or

engine is a part of car.

Implement containment

class cEmployee
{
protected:
int eid;
float esalary;
cString name; //object of class cString
cDate dob; //object of class cDate

public:
cEmployee()
{
id=1;
salary=10000;
}

Implement parameterized constructor

cEmployee :: cEmployee(int id , int sal, char®* nm, int d,

intm, inty)

{

eid=id;

esalary=sal;

name=cString(nm);

date=cDate(d,m,y);
}
int main()
{

cEmployee el(1, 40000, “Ajit”, 14,09, 1994),
}

Constructor calling for cEmployee

cEmployee is invoked first.

cString default constructor.

cDate default constructor.

cString parameterized constructor.
cDate parameterized constructor.

Finally cEmployee is executed.
So here total constructors are called.

Need of member initializer list

* Here unnecessary default contractors are
called.

* To reduce calling of default constructors we
need to use member initializer list.

* By using this only parameterized constructors
are called.

Need of member initializer list:
example

cEmployee :: cEmployee(int id , float sal, char *nm , intd, int m,
inty):name(nm), dob(d, m,vy)

{
eid=id;
esalary=sal;

Constructors calling Sequence:

cString() -> cDate() ->cEmplyee()

cEmployee accept()

void cEmployee :: accept()

{
cout<<“Enter the id\n”;
cin>>eid;
cout<<“Enter the salary\n”;
cin>>esalary;

name.accept();
dob.accept();

Inheritance

One object can extends or acquires properties

form another object.

Represents ‘is a ’ relationship.

Provides reusability and extensibility.

For e.g.

Person
Employee

Inheritance Syntax

class base-class-name

{
//body of base class

};
class derivedClass : accessSpecifier baseClassName

{
//body of derived class

b

Implementing cSalesPerson class

class cSalesPerson : public cEmployee
{
float sales;
float comm;
public:
cSalesPerson();
cSalesPerson(int ,float, char®, int, int, int, float, float);
void accept();
void display();

Constructors for cSalesPerson class

cSalesPerson :: cSalesPerson() //default

sales=0;
comm=0;

cSalesPerson :: cSalesPerson(int id, float sal, intd, intm, inty
Sfloat s, float c) : cEmployee(id,sal,d, m,vy)

{
sales=2000;

comm=1000;

Accept function for cSalesPerson class

void cSalesPerson :: accept()

{

cEmployee::accept(); //called base class fun

cout<<“Enter the sales and comm\n”;
cin>>sales>>comm;

Lab Assighments

 We have already implemented cEmployee class. Now we
have to implement derived classes for this class

1. cSalesPerson class
a. data members: sales and comm.
b. Constructors.
c. accept() and display() functions.
2. cManager class
a. data members: petrol and food allowance.
b. Constructors.
c. accept() and display() functions.

